Neue Technologie für Wasserstoff-Antrieb

Die Hochschule Landshut forscht an Leistungselektronik für Fahrzeuge mit Brennstoffzellen – mit dem Ziel, Gewicht, Kosten und Wirkungsgrad zu verbessern. Der Wandler kann so besonders leicht und kompakt gebaut werden.

Das Projekt Dragan an der Hochschule Landshut forscht nun an einem DCDC-Wandler. Diese passen die Spannung für das Hochvoltbordnetz von Wasserstoff-Antrieben an. Im Gegensatz zu bisherigen Modellen setzt das Forscherteam Galliumnitrid-Transistoren (genauer GaN-HEMTs) ein. Dadurch kann der Wandler besonders leicht und kompakt gebaut werden. Das Forscherteam unter Leitung von Prof. Dr. Alexander Kleimaier erhofft sich außerdem Vorteile bei den Produktionskosten und dem Wirkungsgrad.

„Moderne Mobilität kommt nicht ohne Leistungselektronik aus“, betont Kleimaier, „meist werden diese Technologien in der öffentlichen Debatte aber komplett übersehen.“ Dabei sind diese bei allen Themen rund um die Energiewende essenziell: bei Elektroautos oder Schienenfahrzeugen, bei Energiespeichern oder bei Solar- und Windkraftanlagen. „Wir benötigen Leistungselektronik, um die Energie ins Stromnetz einzuspeisen, um Batterien aufzuladen oder um einen Elektromotor anzusteuern“, so der Landshuter Professor.

Leistungshalbleiterbranche im Umbruch

Derzeit erfährt die Leistungshalbleiterbranche einen Umbruch. „Gerade in den USA entstanden in letzter Zeit viele hochinnovative Firmen, die verstärkt an der Weiterentwicklung in diesem Bereich forschen“, erzählt Kleimaier. So seien nun Leistungshalbleiter auf dem Vormarsch, die nicht wie bisher auf Silizium, sondern auf Siliziumkarbid oder eben Galliumnitrid basieren. Diese stellen aber deutlich höhere Anforderungen an die Aufbautechnik für die leistungselektronischen Schaltungen. Denn um die neuen Leistungshalbleiter darin überhaupt erst einsetzen zu können, sind neue, innovative Aufbautechnologien erforderlich – eine große Herausforderung für das neue Projekt.

„Gemeinsam mit den wissenschaftlichen Mitarbeitern Janusz Wituski und Thomas Huber arbeiten wir in unserem Labor für Leistungselektronik der Fakultät Elektrotechnik und Wirtschaftsingenieurwesen daran, eine besonders niederinduktive Aufbautechnologie realisieren zu können, die zudem möglichst wenig Störungen erzeugt“, erklärt Kleimaier. Damit könnte das Team die exzellenten Eigenschaften der neuen Halbleiter möglichst gut ausnutzen und Leistungselektronik deutlich kompakter und effizienter gestalten. „Raumbedarf und Gewicht sind im Fahrzeug immer problematisch und müssen daher optimiert werden“, so der Forscher. Auch bei den Kosten erhoffen sich die Wissenschaftlerinnen und Wissenschaftler Vorteile.

Wasserstoff-Antrieb oder Elektroautos

Ob sich Autos mit Brennstoffzellen in Zukunft durchsetzen werden, ist derzeit noch nicht absehbar. Letztlich gelte es, die Vor- und Nachteile gegeneinander abzuwägen. So lassen sich Wasserstoff-Fahrzeuge schneller betanken und verfügen über eine größere Reichweite als die bisherigen E-Autos mit Batterie. Zudem ermögliche Wasserstoff als Energieträger die Speicherung großer Mengen von Energie. „Auf der anderen Seite haben wir dabei hohe Verluste durch Energieumwandlung“, so Kleimaier, „schließlich müssen wir den Wasserstoff mithilfe von regenerativen Energien erst erzeugen, dann unter Energieaufwand komprimieren bzw. verflüssigen, um ihn dann wiederum mit Hilfe von Brennstoffzellen in elektrische Energie zurückzuwandeln.“ Den Wissenschaftlerinnen und Wissenschaftlern bleibt in Zukunft damit noch viel zu tun. „Und letztlich müssen die Erkenntnisse dann auch umgesetzt und genutzt werden, wenn wir unsere CO2-Bilanz verbessern wollen“, so Kleimaier.

Das Projekt „Dragan – Entwicklung, Aufbau und Test von 3-Level GaN-Leistungselektronikmodulen“ läuft von 2020 bis 2023 Die Gesamtprojektleitung übernimmt Prof. Dr. Alexander Kleimaier von der Hochschule Landshut. Projektpartner ist das Unternehmen Silver Atena. Das Bayerische Forschungsprogramm Mobilität Innovative Antriebe finanziert das Vorhaben mit insgesamt 686.900 Euro.

haw-landshut.de